Close Menu
    Facebook X (Twitter) Instagram
    CBSE Learning
    • Home
    • NCERT Solutions
    • Class 12
      • Class 12 Physics
      • Class 12 Chemistry
      • Class 12 Maths
      • Class 12th Biology
      • Class 12 English
      • Class 12 Accountancy
      • Class 12 Economics
      • Class 12 Business Studies
      • Class 12 Political Science
      • Class 12 Sociology
      • Class 12 Psychology
    • Class 11
      • Class 11 Maths
      • Class 11 Physics
      • Class 11 Chemistry
      • Class 11 Biology
      • Class 11 Accountancy
      • Class 11 English
      • Class 11 Economics
      • Class 11 Business Studies
      • Class 11 Political Science
      • Class 11 Psychology
      • Class 11 Sociology
    • Class 10
      • Class 10 English
      • Class 10 Maths
      • Class 10 Science
      • Class 10 Social Science
    • Class 9
      • Class 9 Maths
      • Class 9 English
      • Class 9 Science
      • Class 9 Social Science
    • Class 8
      • Class 8 Maths
      • Class 8 Science
      • Class 8 English
      • Class 8 Social Science
    • Class 7
      • Class 7 Maths
      • Class 7 Science
      • Class 7 English
      • Class 7 Social Science
    • Class 6
      • Class 6 Maths
      • Class 6 Science
      • Class 6 English
      • Class 6 Social Science
    CBSE Learning
    Home » NCERT Solutions for Class 7 Maths Chapter 12 – Algebraic Expressions
    Class 7 Maths

    NCERT Solutions for Class 7 Maths Chapter 12 – Algebraic Expressions

    AdminBy AdminUpdated:June 7, 202222 Mins Read
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Share
    Facebook Twitter LinkedIn Pinterest Email

    Exercise 12.1 : Solutions of Questions on Page Number : 234


    Question 1:  Get the algebraicexpressions in the following cases using variables, constants and arithmetic operations.

    (i) Subtraction of z from y.

    (ii) One-half of the sum of numbers x and y.

    (iii) The number z multiplied by itself.

    (iv) One-fourth of the product of numbers p and q.

    (v) Numbers x and y both squared and added.

    (vi) Number 5 added to three times the product of number m and n.

    (vii) Product of numbers y and z subtracted from 10.

    (viii)Sum of numbers a and b subtracted from their product.

    Answer :  

    (i) y − z

    (ii)

    (iii) z2

    (iv)

    (v) x2 + y2

    (vi) 5 + 3 (mn)

    (vii) 10 − yz

    (viii) ab − (a + b)


    NCERT Solutions for Class 7 Maths Chapter 12 – Algebraic Expressions

    Question 2: 

    (i) Identify the terms and their factors in the following expressions

    Show the terms and factors by tree diagrams.

    (a) x − 3 (b) 1 + x + x2 (c) y − y3

    (d) 

    (e) − ab + 2b2 − 3a2

    (ii) Identify terms and factors in the expressions given below:

    (a) − 4x + 5 (b) − 4x + 5y (c) 5y + 3y2

    (d) (e) pq + q

    (f) 1.2 ab − 2.4 b + 3.6 a (g)

    (h) 0.1p2 + 0.2 q2

    Answer :

    (i)

    (a)

    (b)


    (ii)

    Row Expression Terms Factors
    (a) − 4x + 5 − 4x

    5

    − 4, x

    5

    (b) − 4x + 5 − 4x

    5

    − 4, x

    5

    (c) 5y + 3y2 5y  3y2 5,y ,  3,y, y
    (d) xy + 2x2y2 xy  2x2y2 x, y ,  2, x , x, y, y

     

    (e) pq + q pq

    q

    p, q

    q

    (f) 1.2ab − 2.4b + 3.6a 1.2ab

    − 2.4b

    3.6a

    1.2, a, b

    − 2.4, b

    3.6, a

    (g) 3/4 x + 1/4 3/4 x 1/4 3/4 , x, 1/4
    (h) 0.1p2 + 0.2q2 0.1p2

    0.2q2

    0.1, p,p ,  0.2, q,q

    Q3 :  Identify the numerical coefficients of terms (other than constants) in the following expressions:
    (i) 5 – 3t2 (ii) 1 + t + t2 + t3 (iii) x + 2xy+ 3y
    (iv) 100m + 1000n (v) – p2q2 + 7pq (vi) 1.2a + 0.8b
    (vii) 3.14 r2 (viii) 2 (l + b) (ix) 0.1y + 0.01 y2

    Answer :

     

    Row Expression Terms Coefficients
    (i) 5 − 3t2 − 3t2 -3

     

    (ii) 1 + t + t2 + t3 t  t2  t3 1 1 1

     

    (iii) x + 2xy + 3y x  2xy  3y 1 2 3
    (iv) 100m + 1000n 100m 1000n 100

    1000

     

    (v) − p2q2 + 7pq  p2q2

    7pq

     

    -1

    7

    (vi) 1.2a +0.8b 1.2a

    0.8b

    1.2

    0.8

    (vii) 3.14 r2 3.14 r2 3.14
    (viii) 2(l + b) 2l

    2b

    2

    2

    (viii) 0.1y + 0.01y2 0.1y 

    0.01y2

     

    0.1

    0.01


    Q4 :  (a) Identify terms which contain x and give the coefficient of x.
    (i) y2x + y (ii) 13y2– 8yx (iii) x + y + 2
    (iv) 5 + z + zx (v) 1 + x+ xy (vi) 12xy2 + 25
    (vii) 7x + xy2
    (b) Identify terms which contain y2 and give the coefficient of y2.
    (i) 8 – xy2 (ii) 5y2 + 7x (iii) 2x2y -15xy2 + 7y2

    Answer :


    Q5 :  Classify into monomials, binomials and trinomials.
    (i) 4y – 7z (ii) y2 (iii) x + y – xy
    (iv) 100 (v) ab – a – b (vi) 5 – 3t
    (vii) 4p2q – 4pq2 (viii) 7mn (ix) z2 – 3z + 8
    (x) a2 + b2 (xi) z2 + z (xii) 1 + x + x2
    Answer :
    The monomials, binomials, and trinomials have 1, 2, and 3 unlike terms in it respectively.

    (i) 4y – 7z
    Binomial

    (ii) y2
    Monomial

    (iii) x + y – xy
    Trinomial

    (iv) 100
    Monomial

    (v) ab – a – b
    Trinomial

    (vi) 5 – 3t
    Binomial

    (vii) 4p2q – 4pq2
    Binomial

    (viii) 7mn
    Monomial

    (ix) z2 – 3z + 8
    Trinomial

    (x) a2 + b2
    Binomial

    (xi) z2 + z
    Binomial

    (xii) 1 + x + x2
    Trinomial


    Question 6 : 

    State whether a given pair of terms is of like or unlike terms.

    (i) 1, 100

    (ii) 

    (iii) − 29x, − 29y

    (iv) 14xy, 42yx

    (v)4m2p, 4mp2

    (vi)12xz, 12 x2z2

     Answer : 

    The terms which have the same algebraic factors are called like terms. However, when the terms have different algebraic factors, these are called unlike terms.

    (i) 1, 100

    Like

    (ii) − 7x, 

    Like

    (iii) −29x, −29y

    Unlike

    (iv) 14xy, 42yx

    Like

    (v) 4m2p, 4mp2

    Unlike

    (vi) 12xz, 12x2z2

    Unlike


    Q7 :  Identify like terms in the following:
    (a) -xy2, – 4yx2, 8x2, 2xy2, 7y, – 11x2, – 100x, -11yx, 20x2y, -6x2, y, 2xy,3x

    (b) 10pq, 7p, 8q, – p2q2, – 7qp, – 100q, – 23, 12q2p2, – 5p2, 41, 2405p, 78qp, 13p2q, qp2, 701p2

    Answer :
    (a) -xy2, 2xy2
    -4yx2, 20x2y
    8x2, -11x2, -6x2
    7y, y
    -100x, 3x
    -11xy, 2xy

    (b) 10pq, -7qp, 78qp
    7p, 2405p
    8q, -100q
    -p2q2, 12p2q2
    -23, 41
    -5p2, 701p2
    13p2q, qp2


    Exercise 12.2 : Solutions of Questions on Page Number : 239


    Q1 :  Simplify combining like terms:
    (i) 21b – 32 + 7b – 20b
    (ii) – z2 + 13z2 – 5z + 7z3 – 15z
    (iii) p – (p – q) – q – (q – p)
    (iv) 3a – 2b – ab – (a – b + ab) + 3ab + b – a
    (v) 5x2y – 5x2 + 3y x2 – 3y2 + x2 – y2 + 8xy2 -3y2
    (vi) (3 y2 + 5y – 4) – (8y – y2 – 4)

    Answer :
    (i) 21b – 32 + 7b – 20b = 21b + 7b – 20b – 32
    = b (21 + 7 – 20) -32
    = 8b – 32

    (ii) – z2 + 13z2 – 5z + 7z3 – 15z = 7z3 – z2 + 13z2 – 5z – 15z
    = 7z3 + z2 (-1 + 13) + z (-5 – 15)
    = 7z3 + 12z2 – 20z

    (iii) p – (p – q) – q – (q – p) = p – p + q – q – q + p
    = p – q

    (iv) 3a – 2b – ab – (a – b + ab) + 3ba + b – a
    = 3a – 2b – ab – a + b – ab + 3ab + b – a
    = 3a – a – a – 2b + b + b – ab – ab + 3ab
    = a (3 – 1 – 1) + b (- 2 + 1 + 1) + ab (-1 -1 + 3)
    = a + ab

    (v) 5x2y – 5x2 + 3yx2 – 3y2 + x2 – y2 + 8xy2 – 3y2
    = 5x2y + 3yx2 – 5x2 + x2 – 3y2 – y2 – 3y2 + 8xy2
    = x2y (5 + 3) + x2 (-5 + 1) + y2(-3 – 1 – 3) + 8xy2
    = 8x2y – 4x2 – 7y2 + 8xy2

    (vi) (3y2 + 5y – 4) – (8y – y2 – 4)
    = 3y2 + 5y – 4 – 8y + y2 + 4
    = 3y2 + y2 + 5y – 8y – 4 + 4
    = y2 (3 + 1) + y (5 – 8) + 4 (1 – 1)
    = 4y2 – 3y


    Q2 : Add:
    (i) 3mn, – 5mn, 8mn, -4mn
    (ii) t – 8tz, 3tz – z, z – t
    (iii) – 7mn + 5, 12mn + 2, 9mn – 8, – 2mn – 3
    (iv) a + b – 3, b – a + 3, a – b + 3
    (v) 14x + 10y – 12xy – 13, 18 – 7x – 10y + 8xy, 4xy
    (vi) 5m – 7n, 3n – 4m + 2, 2m – 3mn – 5
    (vii) 4x2y, – 3xy2, – 5xy2, 5x2y
    (viii) 3p2q2 – 4pq + 5, – 10p2q2, 15 + 9pq + 7p2q2
    (ix) ab – 4a, 4b – ab, 4a – 4b
    (x) x2 – y2 – 1 , y2 – 1 – x2, 1- x2 – y2

    Answer :
    (i) 3mn + (-5mn) + 8mn + (-4mn) = mn (3 – 5 + 8 – 4)
    = 2mn

    (ii) (t – 8tz) + (3tz – z) + (z – t) = t – 8tz + 3tz – z + z – t
    = t – t – 8tz + 3tz – z + z
    = t (1 – 1) + tz (- 8 + 3) + z (- 1 + 1)
    = -5tz

    (iii) (- 7mn + 5) + (12mn + 2) + (9mn – 8) + (- 2mn – 3)
    = – 7mn + 5 + 12mn + 2 + 9mn – 8 – 2mn – 3
    = – 7mn + 12mn + 9mn – 2mn + 5 + 2 – 8 – 3
    = mn (- 7 + 12 + 9 – 2) + (5 + 2 – 8 – 3)
    = 12mn – 4

    (iv) (a + b – 3) + (b – a + 3) + (a – b + 3)
    = a + b – 3 + b – a + 3 + a – b + 3
    = a – a + a + b + b – b – 3 + 3 + 3
    = a (1 – 1 + 1) + b (1 + 1 – 1) + 3 (- 1 + 1 + 1)
    = a + b + 3

    (v) (14x + 10y – 12xy – 13) + (18 – 7x – 10y + 8yx) + 4xy
    = 14x + 10y – 12xy – 13 + 18 – 7x – 10y + 8yx + 4xy
    = 14x – 7x + 10y – 10y – 12xy + 8yx + 4xy – 13 + 18
    = x (14 – 7) + y (10 – 10) + xy (- 12 + 8 + 4) – 13 + 18
    = 7x + 5

    (vi) (5m – 7n) + (3n – 4m + 2) + (2m – 3mn – 5)
    = 5m – 7n + 3n – 4m + 2 + 2m – 3mn – 5
    = 5m – 4m + 2m – 7n + 3n – 3mn + 2 – 5
    = m (5 – 4 + 2) + n (- 7 + 3) -3mn + 2 – 5
    = 3m – 4n – 3mn – 3

    (vii) 4x2 y – 3xy2 – 5xy2 + 5x2y = 4x2 y + 5x2y – 3xy2 – 5xy2
    = x2 y (4 + 5) + xy2 (- 3 – 5)
    = 9x2y – 8xy2

    (viii) (3p2q2 – 4pq + 5) + (-10 p2q2) + (15 + 9pq + 7p2q2)
    = 3p2q2 – 4pq + 5 – 10 p2q2 + 15 + 9pq + 7p2q2
    = 3p2q2 – 10 p2q2 + 7p2q2 – 4pq + 9pq + 5 + 15
    = p2q2 (3 – 10 + 7) + pq (- 4 + 9) + 5 + 15
    = 5pq + 20

    (ix) (ab – 4a) + (4b – ab) + (4a – 4b)
    = ab – 4a + 4b – ab + 4a – 4b
    = ab – ab – 4a + 4a + 4b – 4b
    = ab (1 – 1) + a (- 4 + 4) + b(4 – 4)
    = 0

    (x) (x2 – y2 – 1) + (y2 – 1 – x2) + (1 – x2 – y2)
    = x2 – y2 – 1 + y2 – 1 – x2 + 1 – x2 – y2
    = x2 – x2 – x2 – y2 + y2 – y2 – 1 – 1 + 1
    = x2(1 – 1 – 1) + y2 (-1 + 1 – 1) + (- 1 – 1 + 1)
    = – x2 – y2 – 1


    Q3 :  Subtract:
    (i) – 5y2 from y2
    (ii) 6xy from – 12xy
    (iii) (a – b) from (a + b)
    (iv) a (b – 5) from b (5 – a)
    (v) – m2 + 5mn from 4m2 – 3mn + 8
    (vi) – x2 + 10x – 5 from 5x – 10
    (vii) 5a2 – 7ab + 5b2 from 3ab – 2a2 -2b2
    (viii) 4pq – 5q2 – 3p2 from 5p2 + 3q2 – pq

    Answer :

    (i) y2 – (-5y2) = y2 + 5y2 = 6y2

    (ii) – 12xy – (6xy) = -18xy

    (iii) (a + b) – (a – b) = a + b – a + b = 2b

    (iv) b (5 – a) – a (b – 5) = 5b – ab – ab + 5a
    = 5a + 5b – 2ab

    (v) (4m2 – 3mn + 8) – (- m2 + 5mn) = 4m2 – 3mn + 8 + m2 – 5 mn
    = 4m2 + m2 – 3mn – 5 mn + 8
    = 5m2 – 8mn + 8

    (vi) (5x – 10) – (- x2 + 10x – 5) = 5x – 10 + x2 – 10x + 5
    = x2 + 5x – 10x – 10 + 5
    = x2 – 5x – 5

    (vii) (3ab – 2a2 – 2b2) – (5a2– 7ab + 5b2)
    = 3ab – 2a2 – 2b2 – 5a2 + 7ab – 5 b2
    = 3ab + 7ab – 2a2 – 5a2 – 2b2 – 5b2
    = 10ab – 7a2 – 7b2

    (viii) 4pq – 5q2 – 3p2 from 5p2 + 3q2 – pq
    (5p2 + 3q2 – pq) – (4pq – 5q2– 3p2)
    = 5p2 + 3q2 – pq – 4pq + 5q2 + 3p2
    = 5p2 + 3p2 + 3q2 + 5q2 – pq – 4pq
    = 8p2 + 8q2 – 5pq


    Q4 :  (a) What should be added to x2 + xy + y2 to obtain 2x2 + 3xy?
    (b) What should be subtracted from 2a + 8b + 10 to get – 3a + 7b + 16?

    Answer :
    (a) Let a be the required term.
    a + (x2 + y2 + xy) = 2x2 + 3xy
    a = 2x2 + 3xy – (x2 + y2 + xy)
    a = 2x2 + 3xy – x2 – y2 – xy
    a = 2x2 – x2 – y2 + 3xy – xy
    = x2 – y2 + 2xy

    (b) Let p be the required term.
    (2a + 8b + 10) – p = – 3a + 7b + 16
    p = 2a + 8b + 10 – (- 3a + 7b + 16)
    = 2a + 8b + 10 + 3a – 7b – 16
    = 2a + 3a + 8b – 7b + 10- 16
    = 5a + b – 6


    Q5 :  What should be taken away from 3x2 – 4y2 + 5xy + 20 to obtain
    – x2 – y2 + 6xy + 20?

    Answer :
    Let p be the required term.
    (3x2 – 4y2 + 5xy + 20) – p = – x2 – y2 + 6xy + 20
    p = (3x2 – 4y2 + 5xy + 20) – (- x2 – y2 + 6xy + 20)
    = 3x2 – 4y2 + 5xy + 20 + x2 + y2 – 6xy – 20
    = 3x2 + x2 – 4y2 + y2 + 5xy – 6xy + 20 – 20
    = 4x2 – 3y2 – xy


    Q6 : (a) From the sum of 3x – y + 11 and – y – 11, subtract 3x – y – 11.
    (b) From the sum of 4 + 3x and 5 – 4x + 2x2, subtract the sum of 3x2 – 5x and
    – x2 + 2x + 5.

    Answer :
    (a) (3x – y + 11) + (- y – 11)
    = 3x – y + 11 – y – 11
    = 3x – y – y + 11 – 11
    = 3x – 2y
    (3x – 2y) – (3x – y – 11)
    = 3x – 2y – 3x + y + 11
    = 3x – 3x – 2y + y + 11
    = – y + 11

    (b) (4 + 3x) + (5 – 4x + 2x2) = 4 + 3x + 5 – 4x + 2x2
    = 3x – 4x + 2x2 + 4 + 5
    = – x + 2x2 + 9
    (3x2 – 5x) + (- x2 + 2x + 5) = 3x2 – 5x – x2 + 2x + 5
    = 3x2 – x2 – 5x + 2x + 5
    = 2x2 – 3x + 5
    (- x + 2x2 + 9) – (2x2 – 3x + 5)
    = – x + 2x2 + 9 – 2x2 + 3x – 5
    = – x + 3x + 2x2 – 2x2 + 9 – 5
    = 2x + 4


    Exercise 12.3 : Solutions of Questions on Page Number : 242


    Question 1 : 

    If m = 2, find the value of:

    (i) m − 2 (ii) 3m − 5 (iii) 9 − 5m

    (iv) 3m2 − 2m − 7 (v)

    Answer : 

    (i) m − 2 = 2 − 2 = 0

    (ii) 3m − 5 = (3 × 2) − 5 = 6 − 5 = 1

    (iii) 9 − 5m = 9 − (5 × 2) = 9 −10 = −1

    (iv) 3m2 − 2m − 7 = 3 × (2 × 2) − (2 × 2) − 7

    = 12 − 4 − 7 = 1

    (v)


    Q2 :  If p = -2, find the value of:
    (i) 4p + 7
    (ii) -3p2 + 4p + 7
    (iii) -2p3 – 3p2 + 4p + 7

    Answer :
    (i) 4p + 7 = 4 x (-2) + 7 = – 8 + 7 = -1

    (ii) – 3p2 + 4p + 7 = -3 (-2) x (-2) + 4 x (-2) + 7
    = – 12 – 8 + 7 = -13

    (iii) -2p3 – 3p2 + 4p + 7
    = -2 (-2) x (-2) x (-2) – 3 (-2) x (-2) + 4 x (-2) + 7
    = 16 – 12 – 8 + 7 = 3


    Q3 :  Find the value of the following expressions, when x = – 1:
    (i) 2x – 7 (ii) – x + 2
    (iii) x2 + 2x + 1
    (iv) 2x2 – x – 2

    Answer :

    (i) 2x – 7
    = 2 x (-1) – 7 = -9

    (ii) – x + 2 = – (-1) + 2 = 1 + 2 = 3

    (iii) x2 + 2x + 1 = (-1) x (-1) + 2 x (-1) + 1
    = 1 – 2 + 1 = 0

    (iv) 2x2 – x – 2 = 2 (-1) x (-1) – (-1) – 2
    = 2 + 1 – 2 = 1


    Q4 : If a = 2, b = – 2, find the value of:
    (i) a2 + b2 (ii) a2 + ab + b2 (iii) a2 – b2

    Answer :
    (i) a2 + b2
    = (2)2 + (-2)2 = 4 + 4 = 8

    (ii) a2 + ab + b2
    = (2 x 2) + 2 x (-2) + (-2) x (-2)
    = 4 – 4 + 4 = 4

    (iii) a2 – b2
    = (2)2 – (-2)2 = 4 – 4 = 0


    Q5 :  When a = 0, b = – 1, find the value of the given expressions:
    (i) 2a + 2b (ii) 2a2 + b2 + 1
    (iii) 2a2 b + 2ab2 + ab (iv) a2 + ab + 2

    Answer :
    (i) 2a + 2b = 2 x (0) + 2 x (-1) = 0 – 2 = -2

    (ii) 2a2 + b2 + 1
    = 2 x (0)2 + (-1) x (-1) + 1
    = 0 + 1 + 1 = 2

    (iii) 2a2b + 2ab2 + ab
    = 2 x (0)2 x (-1) + 2 x (0) x (-1) x (-1) + 0 x (-1)
    = 0 + 0 + 0 = 0

    (iv) a2 + ab + 2
    = (0)2 + 0 x (-1) + 2
    = 0 + 0 + 2 = 2


    Q6 :  Simplify the expressions and find the value if x is equal to 2
    (i) x + 7 + 4 (x – 5) (ii) 3 (x + 2) + 5x – 7
    (iii) 6x + 5 (x – 2) (iv) 4 (2x -1) + 3x + 11

    Answer :
    (i) x + 7 + 4 (x – 5) = x + 7 + 4x – 20
    = x + 4x + 7 – 20
    = 5x – 13
    = (5 x 2) – 13
    = 10 – 13 = -3

    (ii) 3 (x + 2) + 5x – 7 = 3x + 6 + 5x – 7
    = 3x + 5x + 6 – 7 = 8x – 1
    = (8 x 2) – 1 = 16 – 1 =15

    (iii) 6x + 5 (x – 2) = 6x + 5x – 10
    = 11x – 10
    = (11 x 2) – 10 = 22 – 10 = 12

    (iv) 4 (2x – 1) + 3x + 11 = 8x – 4 + 3x + 11
    = 11x + 7
    = (11 x 2) + 7
    = 22 + 7 = 29


    Q7 :  Simplify these expressions and find their values if x = 3, a = – 1, b = – 2.
    (i) 3x – 5 – x + 9 (ii) 2 – 8x + 4x + 4
    (iii) 3a + 5 – 8a + 1 (iv) 10 – 3b – 4 – 5b
    (v) 2a – 2b – 4 – 5 + a

    Answer :
    (i) 3x – 5 – x + 9 = 3x – x – 5 + 9
    = 2x + 4 = (2 x 3) + 4 = 10

    (ii) 2 – 8x + 4x + 4 = 2 + 4 – 8x + 4x
    = 6 – 4x = 6 – (4 x 3) = 6 – 12 = -6

    (iii) 3a + 5 – 8a + 1 = 3a – 8a + 5 + 1
    = – 5a + 6 = -5 x (-1) + 6
    = 5 + 6 = 11

    (iv) 10 – 3b – 4 – 5b = 10 – 4- 3b – 5b
    = 6 – 8b = 6 – 8 x (-2)
    = 6 + 16 = 22

    (v) 2a – 2b – 4 – 5 + a = 2a + a – 2b – 4 – 5
    = 3a – 2b – 9s
    = 3 x (-1) – 2 (-2) – 9
    = – 3 + 4 – 9 = -8


    Q8 :  (i) If z = 10, find the value of z3 – 3 (z – 10).
    (ii) If p = – 10, find the value of p2 – 2p – 100

    Answer :
    (i) z3 – 3 (z – 10) = z3 – 3z + 30
    = (10 x 10 x 10) – (3 x 10) + 30
    = 1000 – 30 + 30 = 1000

    (ii) p2 – 2p – 100
    = (-10) x (-10) – 2 (-10) – 100
    = 100 + 20 – 100 = 20


    Q9 : What should be the value of a if the value of 2x2 + x – a equals to 5, when x = 0?

    Answer :
    2x2 + x – a = 5, when x = 0
    (2 x 0) + 0 – a = 5
    0 – a = 5
    a = -5


    Q10 : Simplify the expression and find its value when a = 5 and b = -3.
    2 (a2 + ab) + 3 – ab

    Answer :
    2 (a2 + ab) + 3 – ab = 2a2 + 2ab + 3 – ab
    = 2a2 + 2ab – ab + 3
    = 2a2 + ab + 3
    = 2 x (5 x 5) + 5 x (-3) + 3
    = 50 – 15 + 3 = 38


    Exercise 12.4 : Solutions of Questions on Page Number : 246


    Question 1 :

    Observe the patterns of digits made from line segments of equal length. You will find such segmented digits on the display of electronic watches or calculators.

    (a)

    (b)

    (c)

    If the number of digits formed is taken to be n, the number of segments required to form ndigits is given by the algebraic expression appearing on the right of each pattern.

    How many segments are required to form 5, 10, 100 digits of the kind −

     ,  , .

    Answer :

    (a) It is given that the number of segments required to form n digits of the kind

     is (5n + 1).

    Number of segments required to form 5 digits = (5 × 5 + 1)

    = 25 + 1 = 26

    Number of segments required to form 10 digits = (5 × 10 + 1)

    = 50 + 1 = 51

    Number of segments required to form 100 digits = (5 × 100 + 1)

    = 500 + 1 = 501

    (b) It is given that the number of segments required to form n digits of the kind  is (3n + 1).

    Number of segments required to form 5 digits = (3 × 5 + 1)

    = 15 + 1 = 16

    Number of segments required to form 10 digits = (3 × 10 + 1)

    = 30 + 1 = 31

    Number of segments required to form 100 digits = (3 × 100 + 1)

    = 300 + 1 = 301

    (c)It is given that the number of segments required to form n digits of the kind  is (5n + 2).

    Number of segments required to form 5 digits = (5 × 5 + 2)

    = 25 + 2 = 27

    Number of segments required to form 10 digits = (5 × 10 + 2)

    = 50 + 2 = 52

    Number of segments required to form 100 digits = (5 × 100 + 2)

    = 500 + 2 = 502



     

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleNCERT Solutions for Class 7 Maths Chapter 11 – Perimeter and Area
    Next Article NCERT Solutions for Class 7 Maths Chapter 13 – Exponents and Powers
    • Chapter 1 - Integers
    • Chapter 2 - Fractions and Decimals
    • Chapter 3 - Data Handling
    • Chapter 4 - Simple Equations
    • Chapter 5 - Lines and Angles
    • Chapter 6 - The Triangle and its Properties
    • Chapter 7 - Congruence of Triangles
    • Chapter 8 - Comparing Quantities
    • Chapter 9 - Rational Numbers
    • Chapter 10 - Practical Geometry
    • Chapter 11 - Perimeter and Area
    • Chapter 12 - Algebraic Expressions
    • Chapter 13 - Exponents and Powers
    • Chapter 14 - Symmetry
    • Chapter 15 - Visualising Solid Shapes
    NCERT Book Solutions
    • NCERT Solutions for Class 12 Maths
    • NCERT Solutions for Class 12 Physics
    • NCERT Solutions for Class 12 Chemistry
    • NCERT Solutions for Class 12 Accountancy
    • NCERT Solutions for Class 12 English
    • NCERT Solutions for Class 12 Economics
    • NCERT Solutions for Class 12 Business Studies
    • NCERT Solutions for Class 12 Political Science
    • NCERT Solutions for Class 12 Psychology
    • NCERT Solutions for Class 12 Sociology
    • NCERT Solutions for Class 12 Biology
    • NCERT Solution for Class 11 Physics
    • NCERT Solutions for Class 11 Chemistry
    • NCERT Solutions for Class 11 Maths
    • NCERT Solutions for Class 11 Biology
    • NCERT Solutions for Class 11 Accountancy
    • NCERT Solutions for Class 11 English
    • NCERT Solutions for Class 11 Business Studies
    • NCERT Solutions for Class 11 Economics
    • NCERT Solutions for Class 11 Political Science
    • NCERT Solutions for Class 11 Psychology
    • NCERT Solutions for Class 11 Sociology
    NCERT Solutions
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 8 Maths
    • NCERT Solutions for Class 8 Science
    • NCERT Solutions for Class 8 English
    • NCERT Solutions for Class 8 Sanskrit
    • NCERT Solutions for Class 8 Social Science
    • NCERT Solutions for Class 7 Maths
    • NCERT Solutions for Class 7 English
    • NCERT Solutions for Class 7 Social Science
    • NCERT Solutions for Class 7 Science
    Exams
    • Privacy Policy
    • NEET 2024
    • NCERT Solutions for Class 8 Sanskrit
    • Current Affairs
    Links
    Latest News
    Contact Us
    Privacy Policy
    Ask a Doubt
    © 2025 CBSE Learning

    Type above and press Enter to search. Press Esc to cancel.