Close Menu
    Facebook X (Twitter) Instagram
    CBSE Learning
    • Home
    • NCERT Solutions
    • Class 12
      • Class 12 Physics
      • Class 12 Chemistry
      • Class 12 Maths
      • Class 12th Biology
      • Class 12 English
      • Class 12 Accountancy
      • Class 12 Economics
      • Class 12 Business Studies
      • Class 12 Political Science
      • Class 12 Sociology
      • Class 12 Psychology
    • Class 11
      • Class 11 Maths
      • Class 11 Physics
      • Class 11 Chemistry
      • Class 11 Biology
      • Class 11 Accountancy
      • Class 11 English
      • Class 11 Economics
      • Class 11 Business Studies
      • Class 11 Political Science
      • Class 11 Psychology
      • Class 11 Sociology
    • Class 10
      • Class 10 English
      • Class 10 Maths
      • Class 10 Science
      • Class 10 Social Science
    • Class 9
      • Class 9 Maths
      • Class 9 English
      • Class 9 Science
      • Class 9 Social Science
    • Class 8
      • Class 8 Maths
      • Class 8 Science
      • Class 8 English
      • Class 8 Social Science
    • Class 7
      • Class 7 Maths
      • Class 7 Science
      • Class 7 English
      • Class 7 Social Science
    • Class 6
      • Class 6 Maths
      • Class 6 Science
      • Class 6 English
      • Class 6 Social Science
    CBSE Learning
    Home » NCERT Solutions for Class 9 Maths: Chapter 6 Lines and Angles
    class 9 Maths

    NCERT Solutions for Class 9 Maths: Chapter 6 Lines and Angles

    AdminBy AdminUpdated:August 10, 202310 Mins Read
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Share
    Facebook Twitter LinkedIn Pinterest Email

    Lines and Angles Class 9


    Exercise 6.1 : Solutions of Questions on Page Number : 96


    Q1 : In the given figure, lines AB and CD intersect at O. If and find ∠BOE and reflex ∠COE.

    Answer :


    Q2 : In the given figure, lines XY and MN intersect at O. If ∠POY = and a:b = 2 : 3, find c.

    Answer :
    Let the common ratio between a and b be x.
    ∴ a = 2x, and b = 3x
    XY is a straight line, rays OM and OP stand on it.
    ∴ ∠ XOM + ∠ MOP + ∠ POY = 180º
    b + a + ∠ POY = 180º
    3x + 2x + 90º = 180º
    5x = 90º
    x = 18º
    a = 2x = 2 x 18 = 36º
    b = 3x= 3 x 18 = 54º
    MN is a straight line. Ray OX stands on it.
    ∴ b + c = 180º (Linear Pair)
    54º + c = 180º
    c = 180º – 54º = 126º
    ∴ c = 126º


    Q3 : In the given figure, ∠ PQR = ∠ PRQ, then prove that ∠ PQS = ∠ PRT.

    Answer :
    In the given figure, ST is a straight line and ray QP stands on it.
    ∴ ∠PQS + ∠PQR = 180 º (Linear Pair)
    ∠PQR = 180 º – ∠PQS (1)
    ∠PRT + ∠PRQ = 180 º (Linear Pair)
    ∠PRQ = 180 º – ∠PRT (2)
    It is given that ∠PQR = ∠PRQ.
    Equating equations (1) and (2), we obtain
    180 º – ∠PQS = 180 – ∠PRT
    ∠PQS = ∠PRT


    Q4 : In the given figure, if x + y = W + Z then prove that AOB is a line.

    Answer :
    It can be observed that,
    x + y + z + w = 360º (Complete angle)
    It is given that,
    x + y = z + w
    ∴ x + y + x + y = 360º
    2(x + y) = 360º
    x + y = 180º
    Since x and y form a linear pair, AOB is a line.


    Q5 : In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that


    Answer :
    It is given that OR ⊥ PQ
    ∴ ∠POR = 90 º
    ⇒ ∠POS + ∠SOR = 90 º
    ∠ROS = 90 º – ∠POS … (1)
    ∠QOR = 90 º (As OR ⊥ PQ)
    ∠QOS – ∠ROS = 90 º
    ∠ROS = ∠QOS – 90 º … (2)
    On adding equations (1) and (2), we obtain
    2 ∠ROS = ∠QOS – ∠POS


    Q6 : It is given that ∠XYZ = 64°and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ∠ZYP, find ∠XYQ and reflex ∠QYP.
    Answer :

    It is given that line YQ bisects ∠ PYZ.
    Hence, ∠ QYP = ∠ ZYQ
    It can be observed that PX is a line. Rays YQ and YZ stand on it.
    ∴ ∠ XYZ + ∠ ZYQ + ∠ QYP = 180º
    ⇒ 64º + 2∠ QYP = 180º
    ⇒ 2∠ QYP = 180º – 64º = 116º
    ⇒ ∠ QYP = 58º
    Also, ∠ ZYQ = ∠ QYP = 58º
    Reflex ∠ QYP = 360º – 58º = 302º
    ∠ XYQ = ∠ XYZ + ∠ ZYQ
    = 64º + 58º = 122º


    Exercise 6.2 : Solutions of Questions on Page Number : 103


    Q1 : In the given figure, find the values of x and y and then show that AB || CD.

    Answer :
    It can be observed that,
    50º + x = 180º (Linear pair)
    x = 130º … (1)
    Also, y = 130º (Vertically opposite angles)
    As x and y are alternate interior angles for lines AB and CD and also measures of these angles are equal to each other, therefore, line AB || CD.


    Q2 : In the given figure, if AB || CD, CD || EF and y: z = 3: 7, find x.

    Answer :
    It is given that AB || CD and CD || EF
    ∴ AB || CD || EF (Lines parallel to the same line are parallel to each other)
    It can be observed that
    x = z (Alternate interior angles) … (1)
    It is given that y: z = 3: 7
    Let the common ratio between y and z be a.
    ∴ y = 3a and z = 7a
    Also, x + y = 180º (Co-interior angles on the same side of the transversal)
    z + y = 180º [Using equation (1)]
    7a + 3a = 180º
    10a = 180º
    a = 18º
    ∴ x = 7a = 7 x 18º = 126º


    Q3 : In the given figure, If AB || CD, EF ⊥ CD and ∠ GED = 126º, find ∠ AGE, ∠ GEF and ∠ FGE.

    Answer :
    It is given that,
    AB || CD
    EF ⊥ CD
    ∠ GED = 126º
    ⇒ ∠ GEF + ∠ FED = 126º
    ⇒ ∠ GEF + 90º = 126º
    ⇒ ∠ GEF = 36º
    ∠ AGE and ∠ GED are alternate interior angles.
    ⇒ ∠ AGE = ∠ GED = 126º
    However, ∠ AGE + ∠ FGE = 180º (Linear pair)
    ⇒ 126º + ∠ FGE = 180º
    ⇒ ∠ FGE = 180º – 126º = 54º
    ∴ ∠ AGE = 126º, ∠ GEF = 36º, ∠ FGE = 54º


    Q4 : In the given figure, if PQ || ST, ∠ PQR = 110º and ∠ RST = 130º, find ∠ QRS.
    [Hint: Draw a line parallel to ST through point R.]

    Answer :

    Let us draw a line XY parallel to ST and passing through point R.
    ∠ PQR + ∠ QRX = 180º (Co-interior angles on the same side of transversal QR)
    ⇒ 110º + ∠ QRX = 180º
    ⇒ ∠ QRX = 70º
    Also,
    ∠ RST + ∠ SRY = 180º (Co-interior angles on the same side of transversal SR)
    130º + ∠ SRY = 180º
    ∠ SRY = 50º
    XY is a straight line. RQ and RS stand on it.
    ∴ ∠ QRX + ∠ QRS + ∠ SRY = 180º
    70º + ∠ QRS + 50º = 180º
    ∠ QRS = 180º – 120º = 60º


    Q5 : In the given figure, if AB || CD, ∠ APQ = 50º and ∠ PRD = 127º, find x and y.

    Answer :
    ∠ APR = ∠ PRD (Alternate interior angles)
    50º + y = 127º
    y = 127º – 50º
    y = 77º
    Also, ∠ APQ = ∠ PQR (Alternate interior angles)
    50º = x
    ∴ x = 50º and y = 77º


    Q6 : In the given figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB || CD.

    Answer :

    Let us draw BM ⊥ PQ and CN ⊥ RS.
    As PQ || RS,
    Therefore, BM || CN
    Thus, BM and CN are two parallel lines and a transversal line BC cuts them at B and C respectively.
    ∴∠ 2 = ∠ 3 (Alternate interior angles)
    However, ∠ 1 = ∠ 2 and ∠ 3 = ∠ 4 (By laws of reflection)
    ∴ ∠ 1 = ∠ 2 = ∠ 3 = ∠ 4
    Also, ∠ 1 + ∠ 2 = ∠ 3 + ∠ 4
    ∠ ABC = ∠ DCB
    However, these are alternate interior angles.
    ∴ AB || CD


    Exercise 6.3 : Solutions of Questions on Page Number : 107


    Q1 : In the given figure, sides QP and RQ of ΔPQR are produced to points S and T respectively. If ∠ SPR = 135º and ∠ PQT = 110º, find ∠ PRQ.

    Answer :
    It is given that,
    ∠ SPR = 135º and ∠ PQT = 110º
    ∠ SPR + ∠ QPR = 180º (Linear pair angles)
    ⇒ 135º + ∠ QPR = 180º
    ⇒ ∠ QPR = 45º
    Also, ∠ PQT + ∠ PQR = 180º (Linear pair angles)
    ⇒ 110º + ∠ PQR = 180º
    ⇒ ∠ PQR = 70º
    As the sum of all interior angles of a triangle is 180º, therefore, for ΔPQR,
    ∠ QPR + ∠ PQR + ∠ PRQ = 180º
    ⇒ 45º + 70º + ∠ PRQ = 180º
    ⇒ ∠ PRQ = 180º – 115º
    ⇒ ∠ PRQ = 65º


    Q2 : In the given figure, ∠ X = 62º, ∠ XYZ = 54º. If YO and ZO are the bisectors of ∠ XYZ and ∠ XZY respectively of ΔXYZ, find ∠ OZY and ∠ YOZ.
    Answer :

    As the sum of all interior angles of a triangle is 180 º, therefore, for ΔXYZ,
    ∠X + ∠XYZ + ∠XZY = 180 º
    62 º + 54 º + ∠XZY = 180 º
    ∠XZY = 180 º – 116 º
    ∠XZY = 64 º
    ∠OZY = = 32 º (OZ is the angle bisector of ∠XZY)
    Similarly, ∠OYZ = = 27 º
    Using angle sum property for ΔOYZ, we obtain
    ∠OYZ + ∠YOZ + ∠OZY = 180 º
    27 º + ∠YOZ + 32 º = 180 º
    ∠YOZ = 180 º – 59 º
    ∠YOZ = 121 º


    Q3 : In the given figure, if AB || DE, ∠ BAC = 35º and ∠ CDE = 53º, find ∠ DCE.

    Answer :
    AB || DE and AE is a transversal.
    ∠ BAC = ∠ CED (Alternate interior angles)
    ∴ ∠ CED = 35º
    In ΔCDE,
    ∠ CDE + ∠ CED + ∠ DCE = 180º (Angle sum property of a triangle)
    53º + 35º + ∠ DCE = 180º
    ∠ DCE = 180º – 88º
    ∠ DCE = 92º


    Q4 : In the given figure, if lines PQ and RS intersect at point T, such that ∠ PRT = 40º, ∠ RPT = 95º and ∠ TSQ = 75º, find ∠ SQT.

    Answer :
    Using angle sum property for ΔPRT, we obtain
    ∠ PRT + ∠ RPT + ∠ PTR = 180º
    40º + 95º + ∠ PTR = 180º
    ∠ PTR = 180º – 135º
    ∠ PTR = 45º
    ∠ STQ = ∠ PTR = 45º (Vertically opposite angles)
    ∠ STQ = 45º
    By using angle sum property for ΔSTQ, we obtain
    ∠ STQ + ∠ SQT + ∠ QST = 180º
    45º + ∠ SQT + 75º = 180º
    ∠ SQT = 180º – 120º
    ∠ SQT = 60º


    Q5 : In the given figure, if PQ ⊥ PS, PQ || SR, ∠ SQR = 28º and ∠ QRT = 65º, then find the values of x and y.

    Answer :
    It is given that PQ || SR and QR is a transversal line.
    ∠PQR = ∠QRT (Alternate interior angles)
    x + 28 º = 65 º
    x = 65 º – 28 º
    x = 37 º
    By using the angle sum property for ΔSPQ, we obtain
    ∠SPQ + x + y = 180 º
    90 º + 37 º + y = 180 º
    y = 180 º – 127 º
    y = 53 º
    x = 37 º and y = 53 º


    Q6 : In the given figure, the side QR of ΔPQR is produced to a point S. If the bisectors of ∠PQR and ∠PRS meet at point T, then prove that ∠QTR=∠QPR.
    Answer :
    In ΔQTR, ∠TRS is an exterior angle.
    ∠QTR + ∠TQR = ∠TRS
    ∠QTR = ∠TRS – ∠TQR (1)
    For ΔPQR, ∠PRS is an external angle.
    ∠QPR + ∠PQR = ∠PRS
    ∠QPR + 2∠TQR = 2∠TRS (As QT and RT are angle bisectors)
    ∠QPR = 2(∠TRS – ∠TQR)
    ∠QPR = 2∠QTR [By using equation (1)]
    ∠QTR = ∠QPR


    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleNCERT Solutions for Class 9 Maths : Chapter 5 Introduction to Euclid’s Geometry
    Next Article NCERT Solutions for Class 9 Maths: Chapter 7 Triangles
    Recent Posts
    • How many states and union territories are in India
    NCERT Book Solutions
    • NCERT Solutions for Class 12 Maths
    • NCERT Solutions for Class 12 Physics
    • NCERT Solutions for Class 12 Chemistry
    • NCERT Solutions for Class 12 Biology
    • NCERT Solution for Class 11 – Physics
    • NCERT Solutions for Class 11 Chemistry
    • NCERT Solutions for Class 11 Maths
    • NCERT Solutions for Class 11 Biology
    • NCERT Solutions for Class 11 – Accountancy
    • NCERT Solutions for Class 11 – English
    • NCERT Solutions for Class 10 Maths – 2023 Updated
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 – English
    • NCERT Solutions for Class 9 Maths 2023
    • NCERT Solutions for Class 9 – Science
    Exams
    • Privacy Policy
    • NEET 2024
    • NCERT Solutions for Class 8 Sanskrit
    Links
    Latest News
    Contact Us
    Privacy Policy
    Ask a Doubt
    © 2023 CBSE Learning

    Type above and press Enter to search. Press Esc to cancel.