Close Menu
    Facebook X (Twitter) Instagram
    CBSE Learning
    • Home
    • NCERT Solutions
    • Class 12
      • Class 12 Physics
      • Class 12 Chemistry
      • Class 12 Maths
      • Class 12th Biology
      • Class 12 English
      • Class 12 Accountancy
      • Class 12 Economics
      • Class 12 Business Studies
      • Class 12 Political Science
      • Class 12 Sociology
      • Class 12 Psychology
    • Class 11
      • Class 11 Maths
      • Class 11 Physics
      • Class 11 Chemistry
      • Class 11 Biology
      • Class 11 Accountancy
      • Class 11 English
      • Class 11 Economics
      • Class 11 Business Studies
      • Class 11 Political Science
      • Class 11 Psychology
      • Class 11 Sociology
    • Class 10
      • Class 10 English
      • Class 10 Maths
      • Class 10 Science
      • Class 10 Social Science
    • Class 9
      • Class 9 Maths
      • Class 9 English
      • Class 9 Science
      • Class 9 Social Science
    • Class 8
      • Class 8 Maths
      • Class 8 Science
      • Class 8 English
      • Class 8 Social Science
    • Class 7
      • Class 7 Maths
      • Class 7 Science
      • Class 7 English
      • Class 7 Social Science
    • Class 6
      • Class 6 Maths
      • Class 6 Science
      • Class 6 English
      • Class 6 Social Science
    CBSE Learning
    Home » NCERT Solutions for Class 8 Maths – Chapter 9 – Algebraic Expressions and Identities
    class 8 Maths

    NCERT Solutions for Class 8 Maths – Chapter 9 – Algebraic Expressions and Identities

    AdminBy Admin24 Mins Read
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Share
    Facebook Twitter LinkedIn Pinterest Email

    Exercise 9.1 : Solutions of Questions on Page Number : 140


    Q1 : Identify the terms, their coefficients for each of the following expressions.
    (i) 5xyz2 – 3zy
    (ii) 1 + x + x2
    (iii) 4x2y2 – 4x2y2z2 + z2
    (iv) 3 – pq + qr – rp
    (v)
    (vi) 0.3a – 0.6ab + 0.5b
    Answer :
    The terms and the respective coefficients of the given expressions are as follows.

    – Terms Coefficients
    (i) 5xyz2
    – 3zy
      5
    – 3
    (ii) 1
    x
    x2
    1
    1
    1
    (iii)   4x2y2
    – 4x2y2z2
    z2
    4
    – 4
    1
    (iv)    3
    – pq
    qr
    – rp
        3
    – 1
    1
    – 1
    (v)

    – xy


    – 1
    (vi) 0.3a
    – 0.6ab
    0.5b
      0.3
    – 0.6
    0.5

    Q2 :  Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories?
    x + y, 1000, x + x2 + x3 + x4, 7 + y + 5x, 2y – 3y2, 2y – 3y2 + 4y3, 5x – 4y + 3xy, 4z – 15z2, ab + bc + cd + da, pqr, p2q + pq2, 2p + 2q

    Answer :
    The given expressions are classified as
    Monomials: 1000, pqr
    Binomials: x + y, 2y – 3y2, 4z – 15z2, p2q + pq2, 2p + 2q
    Trinomials: 7 + y + 5x, 2y – 3y2 + 4y3, 5x – 4y + 3xy
    Polynomials that do not fit in any of these categories are
    x+ x2+ x3+ x4, ab + bc + cd + da


    Q3 :  Add the following.
    (i) ab – bc, bc – ca, ca – ab
    (ii) a – b + ab, b – c + bc, c – a + ac
    (iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2
    (iv) l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl

     

    Answer :
    The given expressions written in separate rows, with like terms one below the other and then the addition of these expressions are as follows.
    (i)

    Thus, the sum of the given expressions is 0.
    (ii)

    Thus, the sum of the given expressions is ab + bc + ac.
    (iii)

    Thus, the sum of the given expressions is – p2q2 + 4pq + 9.
    (iv)

    Thus, the sum of the given expressions is 2(l2 + m2 + n2 + lm + mn + nl).


    Q4 :   (a) Subtract 4a – 7ab + 3b + 12 from 12a – 9ab + 5b – 3
    (b) Subtract 3xy + 5yz – 7zx from 5xy – 2yz – 2zx + 10xyz
    (c) Subtract 4p2q – 3pq + 5pq2 – 8p + 7q – 10 from 18 – 3p – 11q + 5pq – 2pq2 + 5p2q

     

    Answer :
    The given expressions in separate rows, with like terms one below the other and then the subtraction of these expressions is as follows.
    (a)

    (b)

    (c)


    Exercise 9.2 : Solutions of Questions on Page Number : 143


    Q1 :  Find the product of the following pairs of monomials.
    (i) 4, 7p (ii) – 4p, 7p (iii) – 4p, 7pq
    (iv) 4p3, – 3p (v) 4p, 0

    Answer :
    The product will be as follows.
    (i) 4 x 7p = 4 x 7 x p = 28p
    (ii) – 4p x 7p = – 4 x p x 7 x p = (- 4 x 7) x (p x p) = – 28 p2
    (iii) – 4p x 7pq = – 4 x p x 7 x p x q = (- 4 x 7) x (p x p x q) = – 28p2q
    (iv) 4p3 x – 3p = 4 x (- 3) x p x p x p x p = – 12 p4
    (v) 4p x 0 = 4 x p x 0 = 0


    Q2 :  Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
    (p, q); (10m, 5n); (20x2, 5y2); (4x, 3x2); (3mn, 4np)

    Answer :
    We know that,
    Area of rectangle = Length x Breadth
    Area of 1st rectangle = p x q = pq
    Area of 2nd rectangle = 10m x 5n = 10 x 5 x m x n = 50 mn
    Area of 3rd rectangle = 20x2 x 5y2 = 20 x 5 x x2 x y2 = 100 x2y2
    Area of 4th rectangle = 4x x 3x2 = 4 x 3 x x x x2 = 12x3
    Area of 5th rectangle = 3mn x 4np = 3 x 4 x m x n x n x p = 12mn2p


    Q3 : Complete the table of products.


    Q4 :  Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
    (i) 5a, 3a2, 7a4 (ii) 2p, 4q, 8r (iii) xy, 2x2y, 2xy2
    (iv) a, 2b, 3c

    Answer :
    We know that,
    Volume = Length x Breadth x Height
    (i) Volume = 5a x 3a2 x 7a4 = 5 x 3 x 7 x a x a2 x a4 = 105 a7
    (ii) Volume = 2p x 4q x 8r = 2 x 4 x 8 x p x q x r = 64pqr
    (iii) Volume = xy x 2x2y x 2xy2 = 2 x 2 x xy x x2y x xy2 = 4x4y4
    (iv) Volume = a x 2b x 3c = 2 x 3 x a x b x c = 6abc


    Q5 :  Obtain the product of
    (i) xy, yz, zx (ii) a, – a2, a3 (iii) 2, 4y, 8y2, 16y3
    (iv) a, 2b, 3c, 6abc (v) m, – mn, mnp

    Answer :
    (i) xy x yz x zx = x2y2z2
    (ii) a x (- a2) x a3 = – a6
    (iii) 2 x 4y x 8y2 x 16y3 = 2 x 4 x 8 x 16 x y x y2 x y3 = 1024 y6
    (iv) a x 2b x 3c x 6abc = 2 x 3 x 6 x a x b x c x abc = 36a2b2c2
    (v) m x (- mn) x mnp = – m3n2p


    Exercise 9.3 : Solutions of Questions on Page Number : 146


    Q1 :  Carry out the multiplication of the expressions in each of the following pairs.
    (i) 4p, q + r (ii) ab, a – b (iii) a + b, 7a2b2
    (iv) a2 – 9, 4a (v) pq + qr + rp, 0

     

    Answer :
    (i) (4p) x (q + r) = (4p x q) + (4p x r) = 4pq + 4pr
    (ii) (ab) x (a – b) = (ab x a) + [ab x (- b)] = a2b – ab2
    (iii) (a + b) x (7a2 b2) = (a x 7a2b2) + (b x 7a2b2) = 7a3b2 + 7a2b3
    (iv) (a2 – 9) x (4a) = (a2 x 4a) + (- 9) x (4a) = 4a3 – 36a
    (v) (pq + qr + rp) x 0 = (pq x 0) + (qr x 0) + (rp x 0) = 0


    Q2 : Complete the table

    — First expression Second Expression Product
    (i) a b + c + d –
    (ii) x + y – 5 5 xy –
    (iii) p 6p2 – 7p + 5 –
    (iv) 4p2q2 p2 – q2 –
    (v) a + b + c abc –

    Answer :
    The table can be completed as follows.

    – First expression Second Expression Product
    (i) a b + c + d ab + ac + ad
    (ii) x + y – 5 5 xy 5x2y + 5xy2 – 25xy
    (iii) p 6p2 – 7p + 5 6p3 – 7p2 + 5p
    (iv) 4p2q2 p2 – q2 4p4q2 – 4p2q4
    (v) a + b + c abc a2bc + ab2c + abc2

    Q3 :  Find the product.
    (i) (a2) × (2a22) × (4a26)
    (ii) (iii)
    (iv) x × x2 × x3 × x4

    Answer :
    (i) (a2) × (2a22) × (4a26) = 2 × 4 ×a2 × a22 × a26 = 8a50
    (ii)
    (iii)
    (iv) x × x2 × x3 × x4 = x10


    Q4 :  (a) Simplify 3x (4x – 5) + 3 and find its values for (i) x = 3, (ii) .
    (b) a (a2 + a + 1) + 5 and find its values for (i) a = 0, (ii) a = 1, (iii) a = – 1.

    Answer :
    (a) 3x (4x – 5) + 3 = 12x2 – 15x + 3
    (i) For x = 3, 12x2 – 15x + 3 = 12 (3)2 – 15(3) + 3
    = 108 – 45 + 3
    = 66
    (ii) For


    (b)a (a2 + a + 1) + 5 = a3 + a2 + a + 5
    (i) For a = 0, a3 + a2 + a + 5 = 0 + 0 + 0 + 5 = 5
    (ii) For a = 1, a3 + a2 + a + 5 = (1)3 + (1)2 + 1 + 5
    = 1 + 1 + 1 + 5 = 8
    (iii) For a = – 1, a3 + a2 + a + 5 = ( – 1)3 + ( – 1)2 + ( – 1) + 5
    = – 1 + 1 – 1 + 5 = 4


    Q5 :  (a) Add: p (p – q), q (q ­­­– r) and r (r ­- p)
    (b) Add: 2x (z – x – y) and 2y (z – y – x)
    (c) Subtract: 3l (l – 4m + 5n) from 4l (10n – 3m + 2l)
    (d) Subtract: 3a (a + b + c) – 2b (a – b + c) from 4c (- a + b + c)

    Answer :
    (a) First expression = p (p – q) = p2 – pq
    Second expression = q (q – r) = q2 – qr
    Third expression = r (r – p) = r2 – pr
    Adding the three expressions, we obtain

    Therefore, the sum of the given expressions is p2 + q2 + r2 – pq – qr – rp.
    (b) First expression = 2x (z – x – y) = 2xz – 2x2 – 2xy
    Second expression = 2y (z – y – x) = 2yz – 2y2 – 2yx
    Adding the two expressions, we obtain

    Therefore, the sum of the given expressions is – 2x2 – 2y2 – 4xy + 2yz + 2zx.
    (c) 3l (l – 4m + 5n) = 3l2 – 12lm + 15ln
    4l (10n – 3m + 2l) = 40ln – 12lm + 8l2
    Subtracting these expressions, we obtain

    Therefore, the result is 5l2 + 25ln.
    (d) 3a (a + b + c) – 2b (a – b + c) = 3a2 +3ab + 3ac – 2ba + 2b2 – 2bc
    = 3a2 + 2b2 + ab + 3ac – 2bc
    4c ( – a + b + c) = – 4ac + 4bc + 4c2
    Subtracting these expressions, we obtain

    Therefore, the result is – 3a2 – 2b2 + 4c2 – ab + 6bc – 7ac.


    Exercise 9.4 : Solutions of Questions on Page Number : 148


    Q1 :  Multiply the binomials.
    (i) (2x + 5) and (4x – 3) (ii) (y – 8) and (3y – 4)
    (iii) (2.5l – 0.5m) and (2.5l + 0.5m) (iv) (a + 3b) and (x + 5)
    (v) (2pq + 3q2) and (3pq – 2q2)
    (vi)

    Answer :
    (i) (2x + 5) × (4x – 3) = 2x × (4x – 3) + 5 × (4x – 3)
    = 8x2 – 6x + 20x – 15
    = 8x2 + 14x – 15 (By adding like terms)
    (ii) (y – 8) × (3y – 4) = y × (3y – 4) – 8 × (3y – 4)
    = 3y2 – 4y – 24y + 32
    = 3y2 – 28y + 32 (By adding like terms)
    (iii) (2.5l – 0.5m) × (2.5l + 0.5m) = 2.5l × (2.5l + 0.5m) – 0.5m (2.5l + 0.5m)
    = 6.25l2 + 1.25lm – 1.25lm – 0.25m2
    = 6.25l2 – 0.25m2
    (iv) (a + 3b) × (x + 5) = a × (x + 5) + 3b × (x + 5)
    = ax + 5a + 3bx + 15b
    (v) (2pq + 3q2) × (3pq – 2q2) = 2pq × (3pq – 2q2) + 3q2 × (3pq – 2q2)
    = 6p2q2 – 4pq3 + 9pq3 – 6q4
    = 6p2q2 + 5pq3 – 6q4
    (vi)


     Q2 :  Find the product.
    (i) (5 – 2x) (3 + x) (ii) (x + 7y) (7x – y)
    (iii) (a2 + b) (a + b2) (iv) (p2 – q2) (2p + q)

    Answer :
    (i) (5 – 2x) (3 + x) = 5 (3 + x) – 2x (3 + x)
    = 15 + 5x – 6x – 2x2
    = 15 – x – 2x2
    (ii) (x + 7y) (7x – y) = x (7x – y) + 7y (7x – y)
    = 7x2 – xy + 49xy – 7y2
    = 7x2 + 48xy – 7y2
    (iii) (a2 + b) (a + b2) = a2 (a + b2) + b (a + b2)
    = a3 + a2b2 + ab + b3
    (iv) (p2 – q2) (2p + q) = p2 (2p + q) – q2 (2p + q)
    = 2p3 + p2q – 2pq2 – q3


    Q3 :  Simplify.
    (i) (x2 – 5) (x + 5) + 25
    (ii) (a2 + 5) (b3 + 3) + 5
    (iii) (t + s2) (t2 – s)
    (iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)
    (v) (x + y) (2x + y) + (x + 2y) (x – y)
    (vi) (x + y) (x2 – xy + y2)
    (vii) (1.5x – 4y) (1.5x + 4y + 3) – 4.5x + 12y
    (viii) (a + b + c) (a + b – c)

    Answer :
    (i) (x2 – 5) (x + 5) + 25
    = x2 (x + 5) – 5 (x + 5) + 25
    = x3 + 5x2 – 5x – 25 + 25
    = x3 + 5x2 – 5x
    (ii) (a2 + 5) (b3 + 3) + 5
    = a2 (b3 + 3) + 5 (b3 + 3) + 5
    = a2b3 + 3a2 + 5b3 + 15 + 5
    =a2b3 + 3a2 + 5b3 + 20
    (iii) (t + s2) (t2 – s)
    = t (t2 – s) + s2 (t2 – s)
    = t3 – st + s2t2 – s3
    (iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)
    = a (c – d) + b (c – d) + a (c + d) – b (c + d) + 2 (ac + bd)
    = ac – ad + bc – bd + ac + ad – bc – bd + 2ac + 2bd
    = (ac + ac + 2ac) + (ad – ad) + (bc – bc) + (2bd – bd – bd)
    = 4ac
    (v) (x + y) (2x + y) + (x + 2y) (x – y)
    = x (2x + y) + y (2x + y) + x (x – y) + 2y (x – y)
    = 2x2 + xy + 2xy + y2 + x2 – xy + 2xy – 2y2
    = (2x2 + x2) + (y2 – 2y2) + (xy + 2xy – xy + 2xy)
    = 3x2 – y2 + 4xy
    (vi) (x + y) (x2 – xy + y2)
    = x (x2 – xy + y2) + y (x2 – xy + y2)
    = x3 – x2y + xy2 + x2y – xy2 + y3
    = x3 + y3 + (xy2 – xy2) + (x2y – x2y)
    = x3 + y3
    (vii) (1.5x – 4y) (1.5x + 4y + 3) – 4.5x + 12y
    = 1.5x (1.5x + 4y + 3) – 4y (1.5x + 4y + 3) – 4.5x + 12y
    = 2.25 x2 + 6xy + 4.5x – 6xy – 16y2 – 12y – 4.5x + 12y
    = 2.25 x2 + (6xy – 6xy) + (4.5x – 4.5x) – 16y2 + (12y – 12y)
    = 2.25x2 – 16y2
    (viii) (a + b + c) (a + b – c)
    = a (a + b – c) + b (a + b – c) + c (a + b – c)
    = a2 + ab – ac + ab + b2 – bc + ca + bc – c2
    = a2 + b2 – c2 + (ab + ab) + (bc – bc) + (ca – ca)
    = a2 + b2 – c2 + 2ab


    Exercise 9.5 : Solutions of Questions on Page Number : 151


    Q1 : Use a suitable identity to get each of the following products.
    (i) (x + 3) (x + 3) (ii) (2y + 5) (2y + 5)
    (iii) (2a – 7) (2a – 7)
    (iv)
    (v) (1.1m – 0.4) (1.1 m + 0.4) (vi) (a2 + b2) ( – a2 + b2)
    (vii) (6x – 7) (6x + 7) (viii) ( – a + c) ( – a + c)
    (ix)
    (x) (7a – 9b) (7a – 9b)

    Answer :
    The products will be as follows.
    (i) (x + 3) (x + 3) = (x + 3)2
    = (x)2 + 2(x) (3) + (3)2 [(a + b)2 = a2 + 2ab + b2]
    = x2 + 6x + 9
    (ii) (2y + 5) (2y + 5) = (2y + 5)2
    = (2y)2 + 2(2y) (5) + (5)2 [(a + b)2 = a2 + 2ab + b2]
    = 4y2 + 20y + 25
    (iii) (2a – 7) (2a – 7) = (2a – 7)2
    = (2a)2 – 2(2a) (7) + (7)2 [(a – b)2 = a2 – 2ab + b2]
    = 4a2 – 28a + 49
    (iv)
    [(a – b)2 = a2 – 2ab + b2]

    (v) (1.1m – 0.4) (1.1 m + 0.4)
    = (1.1m)2 – (0.4)2 [(a + b) (a – b) = a2 – b2]
    = 1.21m2 – 0.16
    (vi) (a2 + b2) ( – a2 + b2) = (b2 + a2) (b2 – a2)
    = (b2)2 – (a2)2 [(a + b) (a – b) = a2 – b2]
    = b4 – a4
    (vii) (6x – 7) (6x + 7) = (6x)2 – (7)2 [(a + b) (a – b) = a2 – b2]
    = 36x2 – 49
    (viii) ( – a + c) ( – a + c) = ( – a + c)2
    = ( – a)2 + 2( – a) (c) + (c)2 [(a + b)2 = a2 + 2ab + b2]
    = a2 – 2ac + c2
    (ix)
    [(a + b)2 = a2 + 2ab + b2]

    (x) (7a – 9b) (7a – 9b) = (7a – 9b)2
    = (7a)2 – 2(7a)(9b) + (9b)2 [(a – b)2 = a2 – 2ab + b2]
    = 49a2 – 126ab + 81b2


    Q2 : Use the identity (x + a) (x + b) = x2 + (a + b)x + ab to find the following products.
    (i) (x + 3) (x + 7) (ii) (4x +5) (4x + 1)
    (iii) (4x – 5) (4x – 1) (iv) (4x + 5) (4x – 1)
    (v) (2x +5y) (2x + 3y) (vi) (2a2 +9) (2a2 + 5)
    (vii) (xyz – 4) (xyz – 2)

     

    Answer :
    The products will be as follows.
    (i) (x + 3) (x + 7) = x2 + (3 + 7) x + (3) (7)
    = x2 + 10x + 21
    (ii) (4x + 5) (4x + 1) = (4x)2 + (5 + 1) (4x) + (5) (1)
    = 16x2 + 24x + 5
    (iii)

    = 16x2 – 24x + 5
    (iv)
    = 16x2 + 16x – 5
    (v) (2x +5y) (2x + 3y) = (2x)2 + (5y + 3y) (2x) + (5y) (3y)
    = 4x2 + 16xy + 15y2
    (vi) (2a2 +9) (2a2 + 5) = (2a2)2 + (9 + 5) (2a2) + (9) (5)
    = 4a4 + 28a2 + 45
    (vii) (xyz – 4) (xyz – 2)
    =
    = x2y2z2 – 6xyz + 8


    Q3 : Find the following squares by suing the identities.
    (i) (b – 7)2 (ii) (xy + 3z)2 (iii) (6x2 – 5y)2
    (iv)
    (v) (0.4p – 0.5q)2 (vi) (2xy + 5y)2

    Answer :
    (i) (b – 7)2 = (b)2 – 2(b) (7) + (7)2 [(a – b)2 = a2 – 2ab + b2]
    = b2 – 14b + 49
    (ii) (xy + 3z)2 = (xy)2 + 2(xy) (3z) + (3z)2 [(a + b)2 = a2 + 2ab + b2]
    = x2y2 + 6xyz + 9z2
    (iii) (6x2 – 5y)2 = (6x2)2 – 2(6x2) (5y) + (5y)2 [(a – b)2 = a2 – 2ab + b2]
    = 36x4 – 60x2y + 25y2
    (iv) [(a + b)2 = a2 + 2ab + b2]

    (v) (0.4p – 0.5q)2 = (0.4p)2 – 2 (0.4p) (0.5q) + (0.5q)2
    [(a – b)2 = a2 – 2ab + b2]
    = 0.16p2 – 0.4pq + 0.25q2
    (vi) (2xy + 5y)2 = (2xy)2 + 2(2xy) (5y) + (5y)2
    [(a + b)2 = a2 + 2ab + b2]
    = 4x2y2 + 20xy2 + 25y2


    Q4 :  Simplify.
    (i) (a2 – b2)2 (ii) (2x +5)2 – (2x – 5)2
    (iii) (7m – 8n)2 + (7m + 8n)2 (iv) (4m + 5n)2 + (5m + 4n)2
    (v) (2.5p – 1.5q)2 – (1.5p – 2.5q)2
    (vi) (ab + bc)2 – 2ab2c (vii) (m2 – n2m)2 + 2m3n2

    Answer :
    (i) (a2 – b2)2 = (a2)2 – 2(a2) (b2) + (b2)2 [(a – b)2 = a2 – 2ab + b2 ]
    = a4 – 2a2b2 + b4
    (ii) (2x +5)2 – (2x – 5)2 = (2x)2 + 2(2x) (5) + (5)2 – [(2x)2 – 2(2x) (5) + (5)2]
    [(a – b)2 = a2 – 2ab + b2]
    [(a + b)2 = a2 + 2ab + b2]
    = 4x2 + 20x + 25 – [4x2 – 20x + 25]
    = 4x2 + 20x + 25 – 4x2 + 20x – 25 = 40x
    (iii) (7m – 8n)2 + (7m + 8n)2
    = (7m)2 – 2(7m) (8n) + (8n)2 + (7m)2 + 2(7m) (8n) + (8n)2
    [(a – b)2 = a2 – 2ab + b2 and (a + b)2 = a2 + 2ab + b2]
    = 49m2 – 112mn + 64n2 + 49m2 + 112mn + 64n2
    = 98m2 + 128n2
    (iv) (4m + 5n)2 + (5m + 4n)2
    = (4m)2 + 2(4m) (5n) + (5n)2 + (5m)2 + 2(5m) (4n) + (4n)2
    [ (a + b)2 = a2 + 2ab + b2]
    = 16m2 + 40mn + 25n2 + 25m2 + 40mn + 16n2
    = 41m2 + 80mn + 41n2
    (v) (2.5p – 1.5q)2 – (1.5p – 2.5q)2
    = (2.5p)2 – 2(2.5p) (1.5q) + (1.5q)2 – [(1.5p)2 – 2(1.5p)(2.5q) + (2.5q)2]
    [(a – b)2 = a2 – 2ab + b2 ]
    = 6.25p2 – 7.5pq + 2.25q2 – [2.25p2 – 7.5pq + 6.25q2]
    = 6.25p2 – 7.5pq + 2.25q2 – 2.25p2 + 7.5pq – 6.25q2]
    = 4p2 – 4q2
    (vi) (ab + bc)2 – 2ab2c
    = (ab)2 + 2(ab)(bc) + (bc)2 – 2ab2c [(a + b)2 = a2 + 2ab + b2 ]
    = a2b2 + 2ab2c + b2c2 – 2ab2c
    = a2b2 + b2c2
    (vii) (m2 – n2m)2 + 2m3n2
    = (m2)2 – 2(m2) (n2m) + (n2m)2 + 2m3n2 [(a – b)2 = a2 – 2ab + b2 ]
    = m4 – 2m3n2 + n4m2 + 2m3n2
    = m4 + n4m2


    Q5 :Show that
    (i) (3x + 7)2 – 84x = (3x – 7)2 (ii) (9p – 5q)2 + 180pq = (9p + 5q)2
    (iii)
    (iv) (4pq + 3q)2 – (4pq – 3q)2 = 48pq2
    (v) (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0

    Answer :
    (i) L.H.S = (3x + 7)2 – 84x
    = (3x)2 + 2(3x)(7) + (7)2 – 84x
    = 9x2 + 42x + 49 – 84x
    = 9x2 – 42x + 49
    R.H.S = (3x – 7)2 = (3x)2 – 2(3x)(7) +(7)2
    = 9x2 – 42x + 49
    L.H.S = R.H.S
    (ii) L.H.S = (9p – 5q)2 + 180pq
    = (9p)2 – 2(9p)(5q) + (5q)2 – 180pq
    = 81p2 – 90pq + 25q2 + 180pq
    = 81p2 + 90pq + 25q2
    R.H.S = (9p + 5q)2
    = (9p)2 + 2(9p)(5q) + (5q)2
    = 81p2 + 90pq + 25q2
    L.H.S = R.H.S
    (iii) L.H.S =

    (iv) L.H.S = (4pq + 3q)2 – (4pq – 3q)2
    = (4pq)2 + 2(4pq)(3q) + (3q)2 – [(4pq)2 – 2(4pq) (3q) + (3q)2]
    = 16p2q2 + 24pq2 + 9q2 – [16p2q2 – 24pq2 + 9q2]
    = 16p2q2 + 24pq2 + 9q2 – 16p2q2 + 24pq2 – 9q2
    = 48pq2 = R.H.S
    (v) L.H.S = (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a)
    = (a2 – b2) + (b2 – c2) + (c2 – a2) = 0 = R.H.S.


    Q6 : Using identities, evaluate.
    (i) 712 (ii) 992 (iii) 1022 (iv) 9982
    (v) (5.2)2 (vi) 297 x 303 (vii) 78 x 82
    (viii) 8.92 (ix) 1.05 x 9.5

    Answer :
    (i) 712 = (70 + 1)2
    = (70)2 + 2(70) (1) + (1)2 [(a + b)2 = a2 + 2ab + b2 ]
    = 4900 + 140 + 1 = 5041
    (ii) 992 = (100 – 1)2
    = (100)2 – 2(100) (1) + (1)2 [(a – b)2 = a2 – 2ab + b2 ]
    = 10000 – 200 + 1 = 9801
    (iii) 1022 = (100 + 2)2
    = (100)2 + 2(100)(2) + (2)2 [(a + b)2 = a2 + 2ab + b2 ]
    = 10000 + 400 + 4 = 10404
    (iv) 9982 = (1000 – 2)2
    = (1000)2 – 2(1000)(2) + (2)2 [(a – b)2 = a2 – 2ab + b2 ]
    = 1000000 – 4000 + 4 = 996004
    (v) (5.2)2 = (5.0 + 0.2)2
    = (5.0)2 + 2(5.0) (0.2) + (0.2)2 [(a + b)2 = a2 + 2ab + b2 ]
    = 25 + 2 + 0.04 = 27.04
    (vi) 297 x 303 = (300 – 3) x (300 + 3)
    = (300)2 – (3)2 [(a + b) (a – b) = a2 – b2]
    = 90000 – 9 = 89991
    (vii) 78 x 82 = (80 – 2) (80 + 2)
    = (80)2 – (2)2 [(a + b) (a – b) = a2 – b2]
    = 6400 – 4 = 6396
    (viii) 8.92 = (9.0 – 0.1)2
    = (9.0)2 – 2(9.0) (0.1) + (0.1)2 [(a – b)2 = a2 – 2ab + b2 ]
    = 81 – 1.8 + 0.01 = 79.21
    (ix) 1.05 x 9.5 = 1.05 x 0.95 x 10
    = (1 + 0.05) (1- 0.05) x 10
    = [(1)2 – (0.05)2] x 10
    = [1 – 0.0025] x 10 [(a + b) (a – b) = a2 – b2]
    = 0.9975 x 10 = 9.975


    Q7 : Using a2 – b2 = (a + b) (a – b), find
    (i) 512 – 492 (ii) (1.02)2 – (0.98)2 (iii) 1532 – 1472
    (iv) 12.12 – 7.92

    Answer :
    (i) 512 – 492 = (51 + 49) (51 – 49)`
    = (100) (2) = 200
    (ii) (1.02)2 – (0.98)2 = (1.02 + 0.98) (1.02 ­- 0.98)
    = (2) (0.04) = 0.08
    (iii) 1532 – 1472 = (153 + 147) (153 – 147)
    = (300) (6) = 1800
    (iv) 12.12 – 7.92 = (12.1 + 7.9) (12.1 – 7.9)
    = (20.0) (4.2) = 84


    Q8 :  Using (x + a) (x + b) = x2 + (a + b) x + ab, find
    (i) 103 x 104 (ii) 5.1 x 5.2 (iii) 103 x 98 (iv) 9.7 x 9.8

    Answer :
    (i) 103 x 104 = (100 + 3) (100 + 4)
    = (100)2 + (3 + 4) (100) + (3) (4)
    = 10000 + 700 + 12 = 10712
    (ii) 5.1 x 5.2 = (5 + 0.1) (5 + 0.2)
    = (5)2 + (0.1 + 0.2) (5) + (0.1) (0.2)
    = 25 + 1.5 + 0.02 = 26.52
    (iii) 103 x 98 = (100 + 3) (100 – 2)
    = (100)2 + [3 + (- 2)] (100) + (3) (- 2)
    = 10000 + 100 – 6
    = 10094
    (iv) 9.7 x 9.8 = (10 – 0.3) (10 – 0.2)
    = (10)2 + [(- 0.3) + (- 0.2)] (10) + (- 0.3) (- 0.2)
    = 100 + (- 0.5)10 + 0.06 = 100.06 – 5 = 95.06


    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleNCERT Solutions for Class 8 Maths – Chapter 8- Comparing Quantities
    Next Article NCERT Solutions for Class 8 Maths – Chapter 10 – Visualising Solid Shapes
    Recent Posts
    • Birds Name in English
    NCERT Book Solutions
    • NCERT Solutions for Class 12 Maths
    • NCERT Solutions for Class 12 Physics
    • NCERT Solutions for Class 12 Chemistry
    • NCERT Solutions for Class 12 Accountancy
    • NCERT Solutions for Class 12 English
    • NCERT Solutions for Class 12 Economics
    • NCERT Solutions for Class 12 Business Studies
    • NCERT Solutions for Class 12 Political Science
    • NCERT Solutions for Class 12 Psychology
    • NCERT Solutions for Class 12 Sociology
    • NCERT Solutions for Class 12 Biology
    • NCERT Solution for Class 11 Physics
    • NCERT Solutions for Class 11 Chemistry
    • NCERT Solutions for Class 11 Maths
    • NCERT Solutions for Class 11 Biology
    • NCERT Solutions for Class 11 Accountancy
    • NCERT Solutions for Class 11 English
    • NCERT Solutions for Class 11 Business Studies
    • NCERT Solutions for Class 11 Economics
    • NCERT Solutions for Class 11 Political Science
    • NCERT Solutions for Class 11 Psychology
    • NCERT Solutions for Class 11 Sociology
    NCERT Solutions
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 8 Maths
    • NCERT Solutions for Class 8 Science
    • NCERT Solutions for Class 8 English
    • NCERT Solutions for Class 8 Sanskrit
    • NCERT Solutions for Class 8 Social Science
    • NCERT Solutions for Class 7 Maths
    • NCERT Solutions for Class 7 English
    • NCERT Solutions for Class 7 Social Science
    • NCERT Solutions for Class 7 Science
    Exams
    • Privacy Policy
    • NEET 2024
    • NCERT Solutions for Class 8 Sanskrit
    • Current Affairs
    Links
    Latest News
    Contact Us
    Privacy Policy
    Ask a Doubt
    © 2025 CBSE Learning

    Type above and press Enter to search. Press Esc to cancel.